Теория / 14.7. Стоячие волны в линии без потерь
Линия
без потерь описывается системой уравнений
Между длиной волны и коэффициентом фазы существует соотношение
Подставляя выражение для коэффициента фазы в систему
уравнений, получим
Мы знаем, что напряжение и ток в любой точке линии х можно найти как сумму падающей и
отраженной волн.
Точкам, расположенным на расстоянии kλ/2 от конца линии, соответствуют максимальные значения напряжения, так как фазы падающей и отраженной волн в этих точках совпадают.
На расстояниях, кратных четверти волны λ/4 от этих точек, падающая и отраженная волны находятся в противофазе и напряжение имеет минимальное значение.
Координаты максимумов и минимумов напряжения не
зависят от времени и остаются на одном и том же месте.
Аналогичные рассуждения можно провести и для тока,
только положения максимумов и минимумов тока смещены относительно максимумов и
минимумов напряжения на четверть длины волны.
В том случае,
если коэффициент отражения равен единице |p| = 1, то есть при равенстве амплитуд отраженной и
падающей волн в линии возникают стоячие волны напряжения и тока. Кривые
действующих значений в этом случае представляют собой выпрямленные синусоиды
(рис. 14.4).
На линии образуются узлы, то есть точки, в которых напряжение
и ток равны нулю, и пучности – точки, в которых ток и напряжение максимальны.
Причем узлам напряжения соответствуют пучности тока, и, наоборот, узлам тока
соответствуют пучности напряжения.
Условие возникновения стоячих волн может выполняться в
трех случаях:
1) при холостом ходе, когда Zн = ∞;
2) при коротком замыкании, когда Zн = 0;
3) при чисто реактивной нагрузке, когда Zн = ±jХ.
Рассмотрим подробнее эти случаи.
Холостой ход
При холостом ходе ток нагрузки равен нулю и уравнения
линии примут следующий вид:
В точках, где
будут находиться узлы напряжения.
Решением этого уравнения является
Отсюда следует, что узлы будут находиться в точках, координаты которых удовлетворяют условию
то есть в точках с координатами
Пучности напряжения расположены в точках, где
то есть на расстояниях
Так как ток изменяется по закону синусов, то для него справедливы обратные расположения узлов и пучностей. В этом случае в конце линии будет пучность напряжения и узел тока (рис. 14.5).
Входное сопротивление линии в этом случае определится как
Таким образом, для линий разной длины входное сопротивление может
иметь различный характер:
при 0<l<λ/4 имеет емкостный характер;
при λ/4<l<λ/2 – индуктивный характер;
при l=λ/4; 3λ/4... входное сопротивление равно нулю, что соответствует режиму резонанса напряжений;
при l=λ/2, λ, ... входное сопротивление равно ∞, что соответствует режиму резонанса токов.
Изменение входного сопротивления вдоль линии проиллюстрировано
на рис. 14.6.
Короткое замыкание
При коротком замыкании напряжение на нагрузке равно
нулю, и уравнения линии принимают следующий вид:
Тогда в конце линии, то есть при х = 0, и в точках, удаленных от конца линии на целое число полуволн
будут узлы напряжения и пучности тока. В точках с координатами
будут пучности напряжения и узлы тока (рис. 14.7).
Входное сопротивление линии
Таким образом, входное сопротивление
при 0<l<λ/4 имеет индуктивный характер;
при λ/4<l<λ/2 – емкостный характер;
при l=λ/2, λ, ... входное сопротивление равно нулю, что соответствует режиму резонанса напряжений;
при l=λ/4; 3λ/4... входное сопротивление равно ∞, что соответствует режиму резонанса токов.
Изменение входного сопротивления вдоль линии проиллюстрировано на рис. 14.8.Реактивная нагрузка
В случае реактивной нагрузки
и уравнения для тока и напряжения примут следующий вид
В этом случае также получаем стоячие волны, но, так как имеется начальная фаза, в конце линии не будет ни узла, ни пучности.
Так как в любой момент времени в узлах тока I = 0, а в
узлах напряжения U = 0, то в этих точках линии мощность равна нулю. В
остальных точках мощность реактивная, так как ток и напряжение находятся в
противофазе. В этом случае энергия не передается вдоль линии, а происходит
обмен энергией электрического и магнитного полей.
Энергия, передаваемая вдоль линии, складывается из
энергии электрического и магнитного полей. В том случае, когда к концу линии
без потерь подключено сопротивление, равное волновому, вся энергия, доставляемая падающей
волной, поглощается в сопротивлении нагрузки.
Если линия разомкнута, падающая волна встречает
бесконечно большое сопротивление, ток в конце линии обращается в нуль и энергия
магнитного поля переходит в энергию электрического поля.
Если линия замкнута накоротко, падающая волна
встречает сопротивление, равное нулю, напряжение в конце линии обращается в
нуль, энергия электрического поля переходит в энергию магнитного.
Если линия разомкнута, падающая волна встречает
бесконечно большое сопротивление.